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Max-plus algebra and max-plus linear discrete event
systems: An introduction

Bart De Schutter and Ton van den Boom

Abstract— We provide an introduction to the max-plus alge-
bra and explain how it can be used to model a specific class of
discrete event systems with synchronization but no concurrency.
Such systems are called max-plus linear discrete event systems
because they can be described by a model that is “linear”
in the max-plus algebra. We discuss some key properties of
the max-plus algebra and indicate how these properties can
be used to analyze the behavior of max-plus linear discrete
event systems. We also briefly present some control approaches
for max-plus linear discrete event systems, including model
predictive control. Finally, we discuss some extensions of the
max-plus algebra and of max-plus linear systems.

I. I NTRODUCTION

In recent years both industry and the academic world have
become more and more interested in techniques to model,
to analyze, and to control complex discrete event systems
(DES) such as flexible manufacturing systems, telecommu-
nication networks, multiprocessor operating systems, railway
networks, traffic control systems, logistic systems, intelligent
transportation systems, computer networks, multi-level mon-
itoring and control systems, and so on.

Although in general DES lead to a nonlinear description
in conventional algebra, there exists a subclass of DES for
which this model becomes “linear” when we formulate it in
the max-plus algebra [1]–[3], which has maximization and
addition as its basic operations. More specifically, DES in
which only synchronization and no concurrency or choice
occur can be modeled using the operations maximization
(corresponding to synchronization: a new operation startsas
soon as all preceding operations have been finished) and
addition (corresponding to the duration of activities: the
finishing time of an operation equals the starting time plus
the duration). This leads to a description that is “linear” in
the max-plus algebra. Therefore, DES with synchronization
but no concurrency are calledmax-plus linear DES. Some
examples of max-plus linear DES are production systems,
railroad networks, urban traffic networks, queuing systems,
and array processors [1]–[3].

In the early sixties the fact that certain classes of DES
can be described by max-linear models has been discov-
ered independently by a number of researchers, among
whom Cuninghame-Green [4], [5] and Giffler [6]–[8]. An
account of the pioneering work of Cuninghame-Green on
max-algebraic system theory for DES has been given in
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[2]. Related work has been done by Gondran and Minoux
[9]–[11]. In the late eighties and early the topic attracted
new interest due to the research of Cohen, Dubois, Moller,
Quadrat, Viot [12]–[14], Olsder [15]–[17], Gaubert [18]–
[20], which resulted in the publication of [1]. Since then,
several other researchers have entered the field.

The class of DES that can be described by a max-plus
linear time-invariant model is only a small subclass of the
class of all DES. However, for max-plus linear DES there
are many efficient analytic methods available to assess the
characteristics and the performance of the system since we
can use the properties of the max-plus algebra to analyze
max-plus linear models in a very efficient way (as opposed
to, e.g., computer simulation where, before we can determine
the steady-state behavior of a given DES, we may first have
to simulate the transient behavior, which in some cases might
require a rather large amount of computation time).

We will see that there exists a remarkable analogy between
the basic operations of the max-plus algebra (maximization
and addition) on the one hand, and the basic operations
of conventional algebra (addition and multiplication) on the
other hand. As a consequence, many concepts and properties
of conventional algebra also have a max-plus analogue. This
analogy also allows us to translate many concepts, properties,
and techniques from conventional linear system theory to
system theory for max-plus linear DES. However, there are
also some major differences that prevent a straightforward
translation of properties, concepts, and algorithms from con-
ventional linear algebra and linear system theory to max-plus
algebra and max-plus linear system theory for DES. Hence,
there is a need for a dedicated theory and dedicated methods
for max-plus linear DES.

In this paper we give an introduction to the max-plus
algebra and to max-plus linear systems. We will highlight the
most important properties and analysis methods of the max-
plus algebra, discuss some important characteristics of max-
plus linear DES, and give a brief overview of performance
analysis and control methods for max-plus linear DES. More
extensive overviews of the max-plus algebra and max-plus
linear systems can be found in [1]–[3], [19].

II. M AX -PLUS ALGEBRA

A. Basic operations of the max-plus algebra

The basic operations of the max-plus algebra [1]–[3] are
maximization and addition, which will be represented by⊕
and⊗ respectively:

x⊕y = max(x,y) and x⊗y = x+y



for x,y ∈ Rε
def
= R ∪ {−∞}. The reason for using these

symbols is that there is a remarkable analogy between⊕
and conventional addition, and between⊗ and conventional
multiplication: many concepts and properties from linear
algebra (such as the Cayley-Hamilton theorem, eigenvectors
and eigenvalues, Cramer’s rule, . . . ) can be translated to the
max-plus algebra by replacing+ by ⊕ and× by ⊗ [1]–[3],
[16], [19]. Therefore, we also call⊕ the max-plus-algebraic
addition, and⊗ the max-plus-algebraic multiplication. Note
however that one of the major differences between conven-
tional algebra and max-plus algebra is that in general there
do not exist inverse elements w.r.t.⊕ in Rε . The zero element
for ⊕ is ε def

= −∞: we havea⊕ ε = a = ε ⊕a for all a∈ Rε .
The structure(Rε ,⊕,⊗) is called the max-plus algebra.

Let r ∈ R. The rth max-plus-algebraic power ofx∈ R is
denoted byx⊗r

and corresponds torx in conventional algebra.
If x∈ R then x⊗0

= 0 and the inverse element ofx w.r.t. ⊗
is x⊗−1

= −x. There is no inverse element forε sinceε is
absorbing for⊗. If r > 0 thenε⊗r

= ε. If r < 0 thenε⊗r
is

not defined. In this paper we haveε⊗0
= 0 by definition.

The rules for the order of evaluation of the max-plus-
algebraic operators correspond to those of conventional al-
gebra. So max-plus-algebraic power has the highest priority,
and max-plus-algebraic multiplication has a higher priority
than max-plus-algebraic addition.

B. Max-plus-algebraic matrix operations

The basic max-plus-algebraic operations are extended to
matrices as follows. IfA,B∈ R

m×n
ε andC∈ R

n×p
ε then

(A⊕B)i j = ai j ⊕bi j = max(ai j ,bi j )

(A⊗C)i j =
n

⊕

k=1

aik ⊗ck j = max
k

(aik +ck j)

for all i, j. Note the analogy with the definitions of matrix
sum and product in conventional linear algebra.

The matrix εm×n is the m× n max-plus-algebraic zero
matrix: (εm×n)i j = ε for all i, j; and the matrixEn is the
n×n max-plus-algebraic identity matrix:(En)ii = 0 for all i
and (En)i j = ε for all i, j with i 6= j. If the size of the max-
plus-algebraic identity matrix or the max-plus-algebraiczero
matrix is not specified, it should be clear from the context.
The max-plus-algebraic matrix power ofA∈R

n×n
ε is defined

as follows:A⊗0
= En andA⊗k

= A⊗A⊗k−1
for k = 1,2, . . .

C. Connection with graph theory

There exists a close relation between max-plus algebra
(and related structures) and graphs [1], [9], [21].

Definition 2.1 (Precedence graph):Consider A ∈ R
n×n
ε .

The precedence graph ofA, denoted byG (A), is a weighted
directed graph with vertices 1, 2, . . . ,n and an arc( j, i) with
weight ai j for eachai j 6= ε.
It easy to verify that every weighted directed graph corre-
sponds to the precedence graph of an appropriately defined
matrix with entries inRε .

Now we can give a graph-theoretic interpretation of the
max-plus-algebraic matrix power. LetA ∈ R

n×n
ε . If k ∈ N0

then we have

(A⊗k
)i j = max

i1,i2,...,ik−1
(aii1 +ai1i2 + . . .+aik−1 j)

for all i, j. Hence,(A⊗k
)i j is the maximal weight of all paths

of G (A) of length k that have j as their initial vertex andi
as their final vertex — where we assume that if there does
not exist a path of lengthk from j to i, then the maximal
weight is equal toε by definition.

A directed graphG is called strongly connected if for any
two different verticesi, j of the graph, there exists a path
from i to j.

Definition 2.2 (Irreducible matrix):A matrix A∈ R
n×n
ε is

called irreducible if its precedence graphG (A) is strongly
connected.
If we reformulate this in the max-plus algebra then a matrix
A∈ R

n×n
ε is irreducible if

(A⊕A⊗2
⊕ . . .⊕A⊗n−1

)i j 6= ε for all i, j with i 6= j ,

since this condition means that for two arbitrary verticesi
and j of G (A) with i 6= j there exists at least one path (of
length 1, 2, . . . orn−1) from j to i.

Example 2.3 ConsiderA =





0 ε 2
2 0 4
1 2 3



. The precedence

graphG (A) of A is given in Figure 1.

1

32

0 3

0

2
2

4

2

1

Fig. 1. Precedence graph of the matrixA of Example 2.3. The vertices
are indicated in a bold italic font, and the weights are indicated next to the
arcs in a regular font.

Clearly, G (A) is strongly connected, and henceA is irre-
ducible. 2

III. SOME BASIC PROBLEMS IN THE MAX-PLUS ALGEBRA

In this section we present some basic max-plus-algebraic
problems and some methods to solve them.

A. Systems of max-plus linear equations

Let A ∈ R
n×n
ε and b ∈ R

n
ε . In general, the system of

max-plus linear equationsA⊗ x = b will not always have
a solution, even ifA is square or if it has more columns than
rows. Therefore, the concept of subsolution is introduced [1],
[2].

Definition 3.1 (Subsolution):Let A ∈ R
n×n
ε and b ∈ R

n
ε .

We say thatx∈ R
n
ε is a subsolutionof the system of max-

plus linear equationsA⊗x = b if A⊗x 6 b.



Although the systemA⊗x= b does not always have a so-
lution, it always possible to determine thelargest subsolution
if we allow components that are equal to∞ in the solution
and if we assume thatε ⊗∞ = ∞⊗ ε = ε by definition. For
the sake of simplicity and to avoid expressions likeε − ε,
we assume from now on that all the components ofb are
finite. The largest subsolution ˆx of Ax= b is then given by

x̂ j = min
i

(bi −ai j ) for j = 1,2, . . . ,n.

Example 3.2 Consider the matrixA of Example 2.3 and
b=

[

1 2 3
]T

. The system of equationsA⊗x= b does not
have a solution. However, the largest subsolution is given by
x̂=

[

0 1 −2
]T

, and we haveA⊗ x̂=
[

0 2 3
]T

6 b. 2

Note that for the largest subsolution ˆx we haveA⊗ x̂6 b. In
some cases, we want to minimize the difference betweenA⊗
x andb, i.e., findx such that max

i
|bi −(A⊗x)i | is minimized.

A solution x̃ of this problem is given by

x̃ = x̂⊗
δ
2

with δ = max
i

(bi − (A⊗ x̂)i) . (1)

We then have max
i

|bi − (A⊗ x̃)i | =
δ
2 .

B. Max-plus-algebraic eigenvalue problem

Definition 3.3 (Max-plus-algebraic eigenvalue):Let A ∈
R

n×n
ε . If there existλ ∈ Rε andv∈ R

n
ε with v 6= εn×1 such

thatA⊗v= λ ⊗v then we say thatλ is a max-plus-algebraic
eigenvalue ofA and thatv is a corresponding max-plus-
algebraic eigenvector ofA.
It can be shown that every square matrix with entries inRε
has at least one eigenvalue [1]. However, in contrast to linear
algebra, the number of max-plus-algebraic eigenvalues of an
n by n matrix is in general less thann. Moreover, if a matrix
is irreducible, it has is only one eigenvalue (see e.g., [13]).

Example 3.4 Consider the (irreducible) matrixA of Example
2.3. This matrix has one max-plus-algebraic eigenvalueλ = 3
and a corresponding max-plus-algebraic eigenvector isv =
[

0 2 1
]T

. We haveA⊗v =
[

3 5 4
]T

= 3⊗v. 2

There exist several efficient algorithms to determine max-
plus-algebraic eigenvalues such as the power algorithm of
[22] or the policy iteration algorithm of [23].

We also have the following property [1], [13], [24]:
Theorem 3.5:If A∈ Rε is irreducible, then

∃k0 ∈ N, ∃c∈ N0 such that∀k > k0 : A⊗k+c
= λ⊗c

⊗A⊗k

whereλ is the (unique) max-plus-algebraic eigenvalue ofA.
In the case whereA is not irreducible the behavior ofA⊗k

for k is more complex (see, e.g., [1], [3], [25]).

Example 3.6 For the matrixA of Example 2.3 we have

A =





0 ε 2
2 0 4
1 2 3



 , A⊗2
=





3 4 5
5 6 7
4 5 6



 ,

A⊗3
=





6 7 8
8 9 10
7 8 9



 , A⊗4
=





9 10 11
11 12 13
10 11 12



 , . . .

So A⊗k+1
= 3⊗A⊗k

for k = 2,3, . . . 2

C. Systems of max-plus-algebraic multivariate polynomial
equalities and inequalities

A system of multivariate polynomial equalities and in-
equalities in the max-plus algebrais defined as follows:

Given a set of integers{mk} and sets of coeffi-
cients {aki}, {bk} and {cki j} with i ∈ {1, . . . ,mk}, j ∈
{1, . . . ,n} and k ∈ {1, . . . , p1, p1 + 1, . . . , p1 + p2}, find
x∈ R

n such that
mk
⊕

i=1

aki ⊗
n

⊗

j=1

x j
⊗

cki j
= bk for k = 1,2, . . . , p1,

mk
⊕

i=1

aki ⊗
n

⊗

j=1

x j
⊗

cki j
6 bk for k = p1 +1, . . . , p1 + p2.

Note that the exponents can be negative or real. In conven-
tional algebra the equations can be written as

max
i=1,...,mk

(

aki +
n

∑
j=1

cki jx j
)

= bk for k = 1,2, . . . , p1,

max
i=1,...,mk

(

aki +
n

∑
j=1

cki jx j
)

6 bk for k = p1 +1, . . . , p1 + p2.

In [26]–[28] it has been shown that the above problem
and related max-plus problems such as computing max-
plus matrix decompositions, transformation of max-plus lin-
ear state space models, state space realization of max-plus
linear systems, construction of matrices with a given max-
plus characteristic polynomial, and solving systems of max-
min-plus equations can be recast as a so-called extended
linear complementarity problem (ELCP), which is defined
as follows:

Given A ∈ R
p×n, B ∈ R

q×n, c ∈ R
p, d ∈ R

q and m
subsetsφ j of {1,2, . . . , p}, find x∈ R

n such that

m

∑
j=1

∏
i∈φ j

(Ax−c)i = 0 (2)

subject toAx> c andBx= d.

Algorithms for solving ELCPs can be found in [29] (to
compute the entire solution set) and in [30] (to find one
solution only).

IV. M AX -PLUS LINEAR SYSTEMS

A. Max-plus linear state space models

DES with only synchronization and no concurrency can
be modeled by a max-plus-algebraic model of the following
form [1]–[3]:

x(k) = A⊗x(k−1) ⊕ B⊗u(k) (3)

y(k) = C⊗x(k) (4)

with A ∈ R
n×n
ε , B ∈ R

n×m
ε and C ∈ R

l×n
ε where m is the

number of inputs andl the number of outputs. The vectorx
represents the state,u is the input vector, andy is the output
vector of the system. It is important to note that in (3)–(4)
the components of the input, the output, and the state are



event times, and that the counterk in (3)–(4) is an event
counter. For a manufacturing system,u(k) would typically
represent the time instants at which raw material is fed to
the system for thekth time, x(k) the time instants at which
the machines start processing thekth batch of intermediate
products, andy(k) the time instants at which thekth batch
of finished products leaves the system.

Due to the analogy with conventional linear time-invariant
systems, a DES that can be modeled by (3)–(4) will be called
a max-plus linear time-invariant DES system.

Typical examples of systems that can be modeled as max-
plus linear DES are production systems, railroad networks,
urban traffic networks, and queuing systems. We will now
illustrate in detail how the behavior of a simple manufactur-
ing system can be described by a max-plus linear model of
the form (3)–(4).

B. Example: A simple production system

P1

P2

-

-

P
P

P
P

P
PPq

�
�

�
�

�
��1

P3 -

u(k)

y(k)

t1 = 2

t2 = 0

t3 = 1

t4 = 0
t5 = 0

d1 = 5

d2 = 6

d3 = 3

Fig. 2. A simple production system.

Consider the system of Figure 2. This production system
consists of 3 processing units:P1, P2, andP3. Raw material
is fed toP1 andP2, processed, and sent toP3 where assembly
takes place. The processing times forP1, P2, and P3 are
respectivelyd1 = 5, d2 = 6, andd3 = 3 time units. We assume
that it takest1 = 2 time units for the raw material to get
from the input source toP1 and that it takest3 = 1 time unit
for the finished products of processing unitP1 to reachP3.
The other transportation times (t2, t4, and t5) are assumed
to be negligible. At the input of the system and between
the processing units there are buffers with a capacity that is
large enough to ensure that no buffer overflow will occur.
Initially all buffers are empty and none of the processing
units contains raw material or intermediate products.

A processing unit can only start working on a new product
if it has finished processing the previous one. We assume that
each processing unit starts working as soon as all parts are
available. Define

• u(k): time instant at which raw material is fed to the
system for thekth time,

• xi(k): time instant at which theith processing unit starts
working for thekth time,

• y(k): time instant at which thekth finished product
leaves the system.

Let us now determine the time instant at which processing
unit P1 starts working for thekth time. If we feed raw
material to the system for thekth time, then this raw material
is available at the input of processing unitP1 at time t =
u(k) + 2. However,P1 can only start working on the new

batch of raw material as soon as it has finished processing
the previous, i.e., the(k−1)st, batch. Since the processing
time on P1 is d1 = 5 time units, the(k−1)st intermediate
product will leaveP1 at time t = x1(k− 1) + 5. SinceP1

starts working on a batch of raw material as soon as the
raw material is available and the current batch has left the
processing unit, this implies that we have

x1(k) = max(x1(k−1)+5, u(k)+2) (5)

for k= 1,2, . . . The condition that initially processing unitP1

is empty and idle corresponds to the initial conditionx1(0) =
ε since then it follows from (5) thatx1(1) = u(1)+2, i.e., the
first batch of raw material that is fed to the system will be
processed immediately (after a delay of 2 time units needed
to transport the raw material from the input toP1).

Using a similar reasoning we find the following expres-
sions for the time instants at whichP2 andP3 start working
for the (k+1)st time and for the time instant at which the
kth finished product leaves the system:

x2(k) = max(x2(k−1)+6, u(k)+0) (6)

x3(k) = max(x1(k)+5+1,x2(k)+6+0, x3(k−1)+3)

= max(x1(k−1)+11, x2(k−1)+12,

x3(k−1)+3, u(k)+8) (7)

y(k) = x3(k)+3+0 (8)

for k = 1,2, . . . The condition that initially all buffers are
empty corresponds to the initial conditionx1(0) = x2(0) =
x3(0) = ε.

Let us now rewrite the evolution equations of the produc-
tion system using the symbols⊕ and⊗. It is easy to verify
that (5) can be rewritten as

x1(k) = 5⊗x1(k−1) ⊕ 2⊗u(k) .

If we also do this for (6)–(8) and if we rewrite the resulting
equations in max-plus-algebraic matrix notation, we obtain

x(k) =





5 ε ε
ε 6 ε

11 12 3



⊗x(k−1) ⊕





2
0
8



⊗u(k)

y(k) =
[

ε ε 3
]

⊗x(k)

where x(k) =
[

x1(k) x2(k) x3(k)
]T

. Note that this is a
model of the form (3)–(4).

In the next section we shall use this production system to
illustrate some of the max-plus-algebraic techniques thatcan
be used to analyze max-plus linear time-invariant DES.

V. PERFORMANCE ANALYSIS AND CONTROL OF

MAX -PLUS LINEAR SYSTEMS

A. Analysis of max-plus linear systems

Now we present some analysis techniques for DES that
can be described by a model of the form (3)–(4).



First we determine the input-output behavior of the DES.
We have

x(1) = A⊗x(0) ⊕ B⊗u(1)

x(2) = A⊗x(1) ⊕ B⊗u(2)

= A⊗2
⊗x(0) ⊕ A⊗B⊗u(1) ⊕ B⊗u(2)

etc., which yieldsx(k) = A⊗k
⊗ x(0) ⊕

k
⊕

i=1

A⊗k−i
⊗B⊗u(i)

for k = 1,2, . . . Hence,

y(k) = C⊗A⊗k
⊗x(0) ⊕

k
⊕

i=1

C⊗A⊗k−i
⊗B⊗u(i) (9)

for k = 1,2, . . .

Consider two input sequencesu1 = {u1(k)}
∞
k=1 and u2 =

{u2(k)}
∞
k=1. Let y1 = {y1(k)}

∞
k=1 be the output sequence that

corresponds to the input sequenceu1 (with initial condition
x1(0) = x1,0) and lety2 = {y2(k)}

∞
k=1 be the output sequence

that corresponds to the input sequenceu2 (with initial con-
dition x2(0) = x2,0). Let α,β ∈ Rε . From (9) it follows that
the output sequence that corresponds to the input sequence
α ⊗u1 ⊕ β ⊗u2 = {α ⊗u1(k) ⊕ β ⊗u2(k)}

∞
k=1 (with initial

condition α ⊗ x1,0 ⊕ β ⊗ x2,0) is given byα ⊗ y1 ⊕ β ⊗ y2.
This explains why DES that can be described by a model of
the form (3)–(4) are calledmax-plus linear.

Now we assume thatx(0) = εn×1. For the simple pro-
duction system of Section IV-B this would mean that
all the buffers are empty at the beginning. Letp ∈

N0. If we defineY =
[

y(1) y(2) . . . y(p)
]T

and U =
[

u(1) u(2) . . . u(p)
]T

, then (9) results in

Y = H ⊗U (10)

with

H =











C⊗B ε . . . ε
C⊗A⊗B C⊗B . . . ε

...
...

. . .
...

C⊗A⊗p−1
⊗B C⊗A⊗p−2

⊗B . . . C⊗B











.

For the production system of Section IV-B this means that
if we know the time instants at which raw material is fed to
the system, we can compute the time instants at which the
finished products will leave the system.

Example 5.1 Consider the production system of Sec-
tion IV-B. DefineY =

[

y(1) y(2) y(3) y(4)
]T

andU =
[

u(1) u(2) u(3) u(4)
]T

. If x(0) = ε3×1 then we have
Y = H ⊗U with

H =









11 ε ε ε
16 11 ε ε
21 16 11 ε
27 21 16 11









.

If we feed raw material to the system at time instantsu(1) =
0, u(2) = 9, u(3) = 12, u(4) = 15, the finished products will

leave the system at time instantsy(1) = 11,y(2) = 20,y(3) =
25, andy(4) = 30 since

H ⊗









0
9

12
15









=









11
20
25
30









.

2

Now we consider the autonomous DES described by

x(k+1) = A⊗x(k)

y(k) = C⊗x(k)

with x(0) = x0. For the production system of Section IV-B
this would mean that we start from a situation in which some
internal buffers and all the input buffer are not empty at the
beginning (ifx0 6= εn×1) and that afterwards the raw material
is fed to the system at such a rate that the input buffers never
become empty.

If the system matrixA of the autonomous DES is ir-
reducible, then we can compute the “ultimate” behavior
of the autonomous DES by solving the max-plus-algebraic
eigenvalue problemA⊗v= λ ⊗v. By Theorem 3.5 there exist
integersk0 ∈ N and c∈ N0 such thatx(k+ c) = λ⊗c

⊗ x(k)
for all k > k0. This means that

xi(k+c)−xi(k) = cλ (11)

for i = 1,2, . . . ,n and for all k > k0. From this relation it
follows that for a production system the average duration
of a cycle of the production process when the system has
reached its cyclic behavior will be given byλ . The average
production rate will then be equal to1λ . This also enables
us to calculate the utilization levels of the various machines
in the production process. Furthermore, some algorithms to
compute the eigenvalue also yield the critical paths of the
production process and the bottleneck machines [13].

Example 5.2 The system matrixA of the production system
of Section IV-B is not irreducible and it does not lead to
a behavior of the form (11). In fact, it can be verified that
A has three eigenvaluesλ1 = 3, λ2 = 5, and λ3 = 6, with
corresponding eigenvectors

v1 =





ε
ε
0



 , v2 =





0
ε
6



 , andv3 =





ε
0
6



 .

2

B. Control of max-plus linear DES

1) Residuation-based control:The basic control problem
for max-plus linear DES consists in determining the optimal
feeding times of raw material to the system and/or the
optimal starting times of the (internal) processes.

Consider (10). If we know the vectorY of latest times at
which the finished products have to leave the system, we can
compute the vectorU of (latest) time instants at which raw
material has to be fed to the system by solving the system
of max-plus linear equationsH ⊗U = Y, if this system has



a solution, or by determining the largest subsolution ofH ⊗
U = Y, i.e., determining the largestU such thatH ⊗U 6 Y.
This approach is also called residuation [31].

The residuation-based approach for computing the optimal
feeding times is used in [32], [33]. Note that the sequence
u(1),u(2), . . . ,u(p) should be non-decreasing as it corre-
sponds to a sequence of consecutive feeding times. However,
a residuation-based solution does not always satisfy this
property. This problem can be overcome by projection on
the set of non-increasing sequences [34].

Note that the method above corresponds to just-in-time
production. However, if we have perishable goods it is
sometimes better to minimize the maximal deviation between
the desired and the actual finishing times. In this case we
have to solve the problem min

U
max

i
|(Y − H ⊗U)i |. This

problem can be solved using formula (1).

Example 5.3 Let us again consider the production system
of Section IV-B and the matrixH and the vectorsU andY
as defined in Example 5.1. If the finished parts should leave
the system before time instants 17, 19, 24, and 27 and if
we want to feed the raw material to the system as late as
possible, then we should feed raw material to the system
at time instants 0, 6, 11, 16 since the largest subsolution
of H ⊗U =

[

17 19 24 27
]T

is Û =
[

0 6 11 16
]T

.
The actual output timeŝY are given by Ŷ = H ⊗ Û =
[

11 17 22 27
]T

. Note that the largest deviationδ be-
tween the desired and the actual output times is equal to
6. The input times that minimize this deviation are given by

Ũ = Û⊗
δ
2

= Û⊗3=
[

3 9 14 19
]T

. The corresponding

output times are given bỹY =
[

14 20 25 30
]T

. Note
that the largest deviation between the desired finishing and
the actual finishing times is now equal toδ

2 = 3. 2

2) Model predictive control:A somewhat more advanced
control approach for max-plus linear DES has been devel-
oped in [35]. This approach is an extension to max-plus
linear DES of the model-based predictive control approach
called Model Predictive Control (MPC) [36], [37] that has
originally been developed for time-driven systems.

In MPC for max-plus linear DES at each event stepk
the controller computes the input sequence that optimizes
a performance criterionJ over the nextNp event steps,
whereNp is called the prediction horizon, subject to various
constraints on the inputs, states, and outputs of the system.
Typically, the performance criterion aims at minimizing the
difference or the tardiness with respect to a due date signal,
while at the same time making the inputs as large as possible
(just-in-time production). This results in an optimization
problem that has to be solved at each event stepk. In order to
reduce the computational complexity, often a control horizon
Nc is introduced withNc < Np and it is assumed that the input
rate is constant after event stepk+Nc.

MPC uses a receding horizon approach. This means that
once the optimal input sequence has been determined only
the input for the first event step is applied to the system. Next,
at event stepk+1 the new state of the system is determined

or measured1, the horizon is shifted, and the whole process
is repeated again. This receding horizon approach introduces
a feedback mechanism, which allows to reduce the effects
of possible disturbances and model mismatch errors.

In [35] it has been shown that for a broad range of
performance criteria and constraints, max-plus linear MPC
results in a linear programming problem, which can be
solved very efficiently. Worked examples of MPC for max-
plus linear systems and related results can be found in [35],
[38]–[41].

VI. SUMMARY

We have presented an overview of the basic notions of
the max-plus algebra and max-plus linear discrete event
systems (DES). We have introduced the basic operations of
the max-plus algebra and stated some of the main definitions,
theorems, and properties of the max-plus algebra. Next, we
have given an introduction to max-plus linear DES, and
presented some elementary analysis and control methods for
max-plus linear DES.

For more information on the analysis of max-plus linear
time-invariant DES such as production systems, timetable
dependent transportation networks, queuing systems, array
processors, and so on the interested reader is referred to [1]–
[3], [13], [14], [16], [17], [19], [32], [34], [40], [42]–[49] and
the references therein.
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