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Max-plus algebra and max-plus linear discrete event
systems: An introduction

Bart De Schutter and Ton van den Boom

Abstract—We provide an introduction to the max-plus alge- [2]. Related work has been done by Gondran and Minoux
bra and explain how it can be used to model a specific class of [9]—[11]. In the late eighties and early the topic attracted
discrete event systems with synchronization but no concurrency new interest due to the research of Cohen. Dubois. Moller

Such systems are called max-plus linear discrete event systems
because they can be described by a model that is “linear” Quadrat, Viot [12]-{14], Olsder [15]-{17], Gaubert [18]-

in the max-plus algebra. We discuss some key properties of [20], which resulted in the publication of [1]. Since then,
the max-plus algebra and indicate how these properties can several other researchers have entered the field.

be used to analyze the behavior of max-plus linear discrete  The class of DES that can be described by a max-plus
event systems. We also briefly present some control approaches |inaar time-invariant model is only a small subclass of the

for max-plus linear discrete event systems, including model .
predictive control. Finally, we discuss some extensions of the class of all DES. However, for max-plus linear DES there

max-plus algebra and of max-plus linear systems. are many efficient analytic methods available to assess the
characteristics and the performance of the system since we
|. INTRODUCTION can use the properties of the max-plus algebra to analyze

In recent years both industry and the academic world hayBax-plus linear models in a very efficient way (as opposed
become more and more interested in techniques to mod; €-9., computer simulation where, before we can det&min
to analyze, and to control complex discrete event systerfa€ Steady-state behavior of a given DES, we may first have
(DES) such as flexible manufacturing systems, telecommiR simulate the transient behavior, which in some casestmigh
nication networks, multiprocessor operating systemiyagi  require a rather large amount of computation time).

networks, traffic control systems, logistic systems, ligeht ~ We will see that there exists a remarkable analogy between
transportation systems, computer networks, multi-levehm the basic operations of the max-plus algebra (maximization
itoring and control systems, and so on. and addition) on the one hand, and the basic operations

Although in general DES lead to a nonlinear descriptioﬁ’f conventional algebra (addition and multiplication) dwe t _
in conventional algebra, there exists a subclass of DES f8fher hand. As a consequence, many concepts and properties
which this model becomes “linear” when we formulate it in®f conventional algebra also have a max-plus analogue. This
the max-plus algebra [1]-[3], which has maximization and@nalogy also allows us to translate many concepts, pregerti
addition as its basic operations. More specifically, DES iRnd techniques from conventional linear system theory to
which only synchronization and no concurrency or choic8Ystem theory for max-plus linear DES. However, there are
occur can be modeled using the operations maximizatigHSO some major differences that prevent a straightforward
(corresponding to synchronization: a new operation ststs translation of properties, concepts, and algorithms from-c
soon as all preceding operations have been finished) aMgntional linear algebra and linear system theory to ma-pl
addition (corresponding to the duration of activities: théllgebra and max-plus linear system theory for DES. Hence,
finishing time of an operation equals the starting time p|u§1ere is a need for a dedicated theory and dedicated methods
the duration). This leads to a description that is “linear” i for max-plus linear DES.
the max-plus algebra. Therefore, DES with synchronization !n this paper we give an introduction to the max-plus
but no concurrency are calledax-plus linear DESSome algebra and to max-plus linear systems. We will highligkt th
examples of max-plus linear DES are production system810St important properties and analysis methods of the max-
railroad networks, urban traffic networks, queuing system®!Us algebra, discuss some important characteristics af ma
and array processors [1]-[3]. plus linear DES, and give a brief overview of performance

In the early sixties the fact that certain classes of DE§Nalysis and control methods for max-plus linear DES. More
can be described by max-linear models has been discdiXtensive overviews of the max-plus algebra and max-plus
ered independently by a number of researchers, amoHgear systems can be found in [1]{3], [19].
whom Cuninghame-Green [4], [5] and Giffler [6]—[8]. An
account of the pioneering work of Cuninghame-Green on
max-algebraic system theory for DES has been given #ft- Basic operations of the max-plus algebra

" o i the Delft C or S o Confrarit The basic operations of the max-plus algebra [1]-[3] are
Umveers";‘t‘;t O?rieirﬁn‘g’l'(t)g;’ iﬂelfelwegnzt?rmozrs ésgegeslﬂ?”Theoh';ﬂan 4s, Maximization and addition, which will be represented¢by

email:b@leschutter.info,a.j.j.vandenboom@tudel ft.nl and ® respectively:
Bart De Schutter is also with the Marine and Transport Teldgy
department of Delft University of Technology x@y=maxxy) and X®Yy=X+Yy

II. MAX-PLUS ALGEBRA



for x,y € Rg ' RU {—»}. The reason for using these Now we can give a graph-theoretic interpretation of the

symbols is that there is a remarkable analogy between max-plus-algebraic matrix power. Léte R}*". If k € Np
and conventional addition, and betweenand conventional then we have
multiplication: many concepts and properties from linear AV~ max (& . o
algebra (such as the Cayley-Hamilton theorem, eigenv&ctor (A7) = il,i27...,ik,1(a"1 iyt By)
and eigenvalues, Cramer’s rule, ...) can be translatedeto th o . . _
max-plus algebra by replacing by & and x by ® [1]-[3], for all i, j. Hence,(A®");; is the maximal weight of all paths
[16], [19] Therefore, we also Ca@ the max-p|us-a|gebraic of g(A) of Iength k that haVej as their initial vertex and
addition, andg) the max_p|us_a|gebraic mu|tip|ication_ Note &S their final vertex — where we assume that if there does
however that one of the major differences between conveROt exist a path of lengtk from | to i, then the maximal
tional algebra and max-plus algebra is that in general the¥eeight is equal tce by definition.
do not exist inverse elements w.gtin R,. The zero element A directed grapti is called strongly connected if for any
for @ is e %€ we havea® e —a— e a for all ac R,. two different verticed, j of the graph, there exists a path
The structurg(R;, ®,®) is called the max-plus algebra. ~ fromi to j. , , _ on

Let r € R. The rth max-plus-algebraic power of€ R is Deflr_utlon 2:2 (Ir_re_dumble matrix):A matrlee RV is
denoted by@r and corresponds tx in conventional algebra. called irreducible if its precedence graph(A) is strongly

0 . connected.
If xR thenx” =0 and the inverse element afw.r.t. ® If we reformulate this in the max-plus algebra then a matrix

is x? ~ = —x. There is no inverrse element fersincef is Ac RPN is irreducible if
absorbing for®. If r > 0 thene® =¢. If r <0 thene® is €
not defined. In this paper we ha\z@O = 0 by definition. (A@A\QZ@,,,@A%”A)” #¢ foralli,jwithi#j,

The rules for the order of evaluation of the max-plus-

algebraic operators correspond to those of conventional since this condition means that for two arbitrary vertices

gebra. So max-plus-algebraic power has the highest mioriﬁaer;%:hoi g;(A) Vc\;':]h_' 17; #r;zfrjetc?)i(ms at least one path (of

and max-plus-algebraic multiplication has a higher ptyori

than max-plus-algebraic addition. 0 ¢ 2
Example 2.3 ConsiderA= |2 0 4|. The precedence
B. Max-plus-algebraic matrix operations 1 2 3

i _ _ gt;raph%(A) of A'is given in Figure 1.
The basic max-plus-algebraic operations are extended 1o

matrices as follows. 1A B € R™" andC € Rg*P then 0
(A®B)ij = aj ® bij = maxajj, bij)

n
(A®C)ij = Pak@cj= ml?x(a«'kJerj)
k1

for all i, j. Note the analogy with the definitions of matrix
sum and product in conventional linear algebra. 0
The matrix Enxn is the mx n max-plus-algebraic zero
matrix: (gmxn)ij = ¢ for all i, j; and the matrixg, is the Fig. 1. Precedence graph of the matAxof Example 2.3. The vertices
nxn max-plus-algebraic identity matri>(E ) —0 for alli are indicated in a bold italic font, and the weights are iatkd next to the
PP . i arcs in a regular font.
and (En)ij = € for all i, j with i # j. If the size of the max-

plus-algebraic identity matrix or the max-plus-algebrzéco Clearly, (A) is strongly connected, and henéeis irre-

matrix is not specified, it should be clear from the contextyciple. O
The max-plus-algebraic matrix power Afc R}*" is defined
as follows: A=° — E, and A% :A@A‘X‘k_l fork=1,2,... [1l. SOME BASIC PROBLEMS IN THE MAX-PLUS ALGEBRA
In this section we present some basic max-plus-algebraic
C. Connection with graph theory problems and some methods to solve them.

There exists a close relation between max-plus algebfa Systems of max-plus linear equations
(and related structures) and graphs [1], [9], [21]. Let Ac R™" and b € R, In general, the system of
Definition 2.1 (Precedence graphConsider A € R{*".  max-plus linear equationd® x = b will not always have
The precedence graph &f denoted by¥(A), is a weighted a solution, even ifA is square or if it has more columns than
directed graph with vertices 1, 2, . nand an ardj,i) with  rows. Therefore, the concept of subsolution is introdudgd [
weight a;; for eacha;; # €. [2].
It easy to verify that every weighted directed graph corre- Definition 3.1 (Subsolution)Let A € R}*" and b € R}.
sponds to the precedence graph of an appropriately definéé say thatx € R} is a subsolutionof the system of max-
matrix with entries inRg. plus linear equationd@x=Db if A@x<b.



Although the systerA®x = b does not always have a so- So AT 3®A®k fork=23,... i
lution, it always possible to determine tla@gest subsolution
if we allow components that are equal «oin the solution
and if we assume that® o = 0o ® & = € by definition. For

C. Systems of max-plus-algebraic multivariate polynomial
equalities and inequalities

the sake of simplicity and to avoid expressions like &, A system of multivariate polynomial equalities and in-
we assume from now on that all the Componentgj(ﬁre equalltles in the max-plus a|98bl8. defined as follows:
finite. The largest subsolutiondf Ax=b is then given by Given a set of integers{m¢} and sets of coeffi-

cients {ax}, {bx} and {c;} with i€ {1,....m}, ] €
{4,...,n} andke {1,...,p1,p1+1,...,p1+ p2}, find
Example 3.2 Consider the matrixA of Example 2.3 and x € R" such that

b=[1 2 3]T. The system of equationss x = b does not m NG

have a solution. However, the largest subsolution is giwen b EBaki ®®Xj” =bx fork=12...,p1,

Xj = min(b; — &) forj=21,2,...,n.
|

X= [0 1 —Z}T, and we havA® X = [o 2 3}T <b.O i;l jil
-
Note that for the largest subsolutignvé haveA®X < b. In @aki ®®Xj® “i b for k= out L Pyt Po.
some cases, we want to minimize the difference betwtegen i=1 j=1

x andb, i.e., findx such that makb; — (A®x)i| is minimized.  Note that the exponents can be negative or real. In conven-

A solution X of this problem'is given by tional algebra the equations can be written as
v o O . . n
X=Ro5  witho=max(b (A=K - (1) max (Bt 3 oaxg) =by fork=1.2.....p,
£

We then have mapbi — (A®R)i| = 3. n
I

o max i+ CiXj) <bxk fork=p1+1,...,p1+ p2.

B. Max-plus-algebraic eigenvalue problem i=1...my (B J; aii) < b P PLt P2

Definition 3.3 (Max-plus-algebraic eigenvaluel)et Ac In [26]—[28] it has been shown that the above problem

RZ*". If there existA € R andv € Ry with v# En.1 SUCh 504 related max-plus problems such as computing max-
thatA@v=A @vthen we say thad is a max-plus-algebraic s matrix decompositions, transformation of max-plus li
eigenvalue ofA and thatv is a corresponding max-plus- g5y state space models, state space realization of max-plus
algebraic eigenvector Gk o _ . linear systems, construction of matrices with a given max-
It can be shown that every square matrix with entrie®in |5 characteristic polynomial, and solving systems of max
has at least one eigenvalue [1]. However, in contrast t@"”emin-plus equations can be recast as a so-called extended

algebra, the number of max-plus-algebraic eigenvalues of §,a4r complementarity problem (ELCP), which is defined
n by n matrix is in general less tham Moreover, if a matrix

is irreducible, it has is only one eigenvalue (see e.g.,)[13] as fogi/v(:i.A c RPN Be RN ceRP, deRI and m
Example 3.4 Consider the (irreducible) matri of Example subsetsp; of {1,2,...,p}, find x€ R" such that
2.3. This matrix has one max-plus-algebraic eigenvalae3 m
and a corresponding max-plus-algebraic eigenvectar=is z |‘| (Ax—c)j =0 2
[0 2 1. We haveAwv=[3 5 4]'=3@v. O Sicq
There exist several efficient algorithms to determine max- subject toAx > ¢ and Bx= d.
plus-algebraic eigenvalues such as the power algorithm Afgorithms for solving ELCPs can be found in [29] (to
[22] or the policy iteration algorithm of [23]. compute the entire solution set) and in [30] (to find one
We also have the following property [1], [13], [24]: solution only).

Theorem 3.5:If A< R, is irreducible, then
IV. MAX-PLUS LINEAR SYSTEMS

k+c .C K
Jko €N, 3c€ N such thatvk > kg : A” =A@ A" A. Max-plus linear state space models

whereA is the (unique) max-plus-algebraic eigenvalueﬁl\(of DES with only synchronization and no concurrency can
In the case wherd is not irreducible the behavior o&* be modeled by a max-plus-algebraic model of the following

for k is more complex (see, e.g., [1], [3], [25]). form [1]-[3]:
Example 3.6 For the matrixA of Example 2.3 we have x(k) = A@x(k— 1) ® B u(k) (3)
[0 ¢ 2 , [3 45 y(k) =C@x(k) (4)
— X7 _
A= i g g A= i g g ’ with A e R, B e R™™ and C € RX" where m is the
- - number of inputs andl the number of outputs. The vecter
.3 6 7 8 4 9 10 11 represents the state,is the input vector, ang is the output
A"=18 9 10, A" =11 12 13}, vector of the system. It is important to note that in (3)—(4)
L7 8 9 | 10 11 12 the components of the input, the output, and the state are



event times, and that the counterin (3)—(4) is an event batch of raw material as soon as it has finished processing
counter. For a manufacturing system{k) would typically the previous, i.e., thék — 1)st, batch. Since the processing
represent the time instants at which raw material is fed tome on P, is d; =5 time units, the(k — 1)st intermediate
the system for thdth time, x(k) the time instants at which product will leaveP; at timet = x;(k—1) +5. SinceP;

the machines start processing tkte batch of intermediate starts working on a batch of raw material as soon as the
products, andy(k) the time instants at which thieh batch raw material is available and the current batch has left the

of finished products leaves the system. processing unit, this implies that we have
Due to the analogy with conventional linear time-invariant
systems, a DES that can be modeled by (3)—(4) will be called x1 (k) = max(x¢(k—1) +5, u(k) +2) 5)

a max-plus linear time-invariant DES system. N o )

Typical examples of systems that can be modeled as md®r k=1,2,... The condition that initially processing uri#
plus linear DES are production systems, railroad networki empty and idle corresponds to the initial conditiqi0) =
urban traffic networks, and queuing systems. We will nov§ Since then it follows from (5) that; (1) =u(1) +2, i.e., the
illustrate in detail how the behavior of a simple manufacturfirst batch of raw material that is fed to the system will be

ing system can be described by a max-plus linear model Bfocessed immediately (after a delay of 2 time units needed

the form (3)—(4). to transport the raw material from the input Rp).
_ ) ) Using a similar reasoning we find the following expres-
B. Example: A simple production system sions for the time instants at whid® and P; start working
for the (k+ 1)st time and for the time instant at which the
di=5 kth finished product leaves the system:
W 1ZA P L 1 g
\ =3, x2(K) = max(xz(k— 1) + 6, u(k) +0) (6)
b6 =0+ YK xa(K) = max(xy (k) + 5+ 1, x2(k) + 6+ 0, xa(k— 1) + 3)
th=0 P, / =maxxy(k—1)+11 xp(k— 1)+ 12,
x3(k—1)+3, u(k) +8) @)
Fig. 2. A simple production system. y(k) =x3(k) +3+0 (8)

Consider the system of Figure 2. This production syste#®’ k= 1,2,... The condition that initially all buffers are
consists of 3 processing unitg;, P>, andP;. Raw material €mpty corresponds to the initial conditiod(0) = %(0) =
is fed toP, andP,, processed, and sentB where assembly x3(0) = &.
takes place. The processing times fer, P, and P; are Let us now rewrite the evolution equations of the produc-
respectivelyd; =5, d, = 6, andds = 3 time units. We assume tion system using the symbols and®. It is easy to verify
that it takest; = 2 time units for the raw material to get that (5) can be rewritten as
from the input source t®; and that it take$z = 1 time unit
for the finished products of processing uRijt to reachPs. x1(k) =5@x1(k—1) & 2®u(k) .
The other transportation times,(t4, andts) are assumed ) . ) )
to be negligible.p At the inputﬁzogc ?he sysSt)em and betweeH we glso glo this for (6)—(8) ar_1d i we rewnte_ the resultm_g
the processing units there are buffers with a capacity that gquations in max-plus-algebraic matrix notation, we abtai

large enough to ensure that no buffer overflow will occur. 5 & ¢ 2
Initially all buffers are empty and none of the processing x(K) = e 6 ¢ |oxk-1)a | 0|ouk
units contains raw material or intermediate products. 11 12 3 8

A processing unit can only start working on a new product
if it has finished processing the previous one. We assume that Y(K)=[ € & 3 ]@x(k)
each processing unit starts working as soon as all parts are

. ) T P
available. Define where x(k) = [x1(k) x2(k) x3(k)] . Note that this is a
« u(k): time instant at which raw material is fed to themModel of the form (3)~(4).
system for thekth time, In the next section we shall use this production system to
« X (K): time instant at which théh processing unit starts illustrate some of the max-plus-algebraic techniqueschat
working for thekth time, be used to analyze max-plus linear time-invariant DES.
« y(k): time instant at which thekth finished product
leaves the system. V. PERFORMANCE ANALYSIS AND CONTROL OF
Let us now determine the time instant at which processing MAX-PLUS LINEAR SYSTEMS

unit P, starts working for thekth time. If we feed raw
material to the system for tHeh time, then this raw material
is available at the input of processing uifit at timet = Now we present some analysis techniques for DES that
u(k) + 2. However,P; can only start working on the new can be described by a model of the form (3)—(4).

A. Analysis of max-plus linear systems



First we determine the input-output behavior of the DESeave the system at time instaptd) = 11, y(2) = 20,y(3) =

We have 25, andy(4) = 30 since
x(1) = A@x(0) & Bou(l) 8 ;é
x(2) =A®x(1) ©® Bou(2) Hol 15 | =] o5
— A 9x(0) ® A BaU(L) & BOU(2) 15 30
‘ O
: . k ki .
etc., which yieldsx(k) = A”" @ x(0) © A" @B®u(i) Now we consider the autonomous DES described by
i=1
for k=1,2,... Hence, X(k+1) = A@ x(K)
K K ki ) y(k) =Cx(k)
y(k) = CRA” @x(0) & HCoA” @Bxu(i) () _ ,
i1 with x(0) = xo. For the production system of Section IV-B

this would mean that we start from a situation in which some
for k= :_Lv 2, ] - internal buffers and all the input buffer are not empty at the
Consider two input sequences = {u1(K)},_, anduz =  peginning (ifxo # Enx1) and that afterwards the raw material
{U2(K) }i_y- Letyr = {y1(k) }_, be the output sequence thatis feq to the system at such a rate that the input buffers never
corresponds to the input sequenge(with initial condition  pacome empty.
x1(0) = x1,0) and lety2 = {y2(K)};_, be the output sequence | the system matrixA of the autonomous DES is ir-
that corresponds to the input sequemgg(with initial con-  reqyciple, then we can compute the “ultimate” behavior
dition x2(0) = x20). Let a, B € Re. From (9) it follows that ot the autonomous DES by solving the max-plus-algebraic
the output sequence that corresponds to the input sequeRtgenvalue problerA@v = A @v. By Theorem 3.5 there exist
au & B ={aeu(k &Bou(kh., (With initial  jyegersky € N andc € No such that(k+ c) = A<° @ x(k)
conditiona ®x10 @ B ®Xz0) IS given bya ®y1 ® B®Y2.  for all k > Ko. This means that
This explains why DES that can be described by a model of
the form (3)—(4) are callechax-plus linear Xi(k+c¢) —xi(k) = cA (11)
Now we assume thak(0) = Enxi. For the simple pro- ¢, j _ 1 5 1 and for allk > ko, From this relation it

duction system of Section IV-B this W_OUI_d mean thatfoIIows that for a production system the average duration

all the buffers are empty at the beg|nn+ng. Lete of a cycle of the production process when the system has
No. If we defineY = [ygl) y@2 .. y(p)] andU = eached its cyclic behavior will be given by. The average
[u) u2) ... u(p)], then (9) results in production rate will then be equal . This also enables
us to calculate the utilization levels of the various maekin

Y=HoU (10) in the production process. Furthermore, some algorithms to

with compute the eigenvalue also yield the critical paths of the

CoB £ £ production process and the bottleneck machines [13].
&
CoA®B CoB £ Example 5.2 The system matriyA of the production system
H = . of Section IV-B is not irreducible and it does not lead to
: L : ) : : a behavior of the form (11). In fact, it can be verified that
coAP 9B CcoA®P B ... C®B A has three eigenvalue¥, = 3, A, = 5, and Az = 6, with

. _ . corresponding eigenvectors
For the production system of Section IV-B this means that

if we know the time instants at which raw material is fed to € 0 €
the system, we can compute the time instants at which the vi=| & |,v2=| € |,andvz=| O
finished products will leave the system. 0 6 6

Example 5.1 Consider the production system of Sec-
tion IV-B. DefineY = [y(1) y(2) y(3) y(4)}T andU = B. Control of max-plus linear DES

[u1) u@) u@d) u@)]". If x(0) = Es,1 then we have 1) Residuation-based controlfhe basic control problem

Y =H®U with for max-plus linear DES consists in determining the optimal
11 & & ¢ feeding times of raw material to the system and/or the
16 11 & ¢ optimal starting times of the (internal) processes.
H= 21 16 11 ¢ . Consider (10). If we know the vectdf of latest times at
27 21 16 11 which the finished products have to leave the system, we can
compute the vectod of (latest) time instants at which raw
If we feed raw material to the system at time instan(ts) = material has to be fed to the system by solving the system

0, u(2) =9, u(3) =12, u(4) = 15, the finished products will of max-plus linear equationd ®U =, if this system has



a solution, or by determining the largest subsolutiorHa®  or measuret] the horizon is shifted, and the whole process
U =Y, i.e., determining the largekt such thatH @ U <Y. is repeated again. This receding horizon approach intesluc
This approach is also called residuation [31]. a feedback mechanism, which allows to reduce the effects
The residuation-based approach for computing the optimef possible disturbances and model mismatch errors.
feeding times is used in [32], [33]. Note that the sequence In [35] it has been shown that for a broad range of
u(1),u(2),...,u(p) should be non-decreasing as it correperformance criteria and constraints, max-plus linear MPC
sponds to a sequence of consecutive feeding times. Howewassults in a linear programming problem, which can be
a residuation-based solution does not always satisfy théslved very efficiently. Worked examples of MPC for max-
property. This problem can be overcome by projection oplus linear systems and related results can be found in [35],

the set of non-increasing sequences [34]. [38]-[41].
Note that the method above corresponds to just-in-time
production. However, if we have perishable goods it is VI. SUMMARY

sometimes better to minimize the maximal deviation between \y,e have presented an overview of the basic notions of

the desired and the actual fini§hing times. In this case WRe max-plus algebra and max-plus linear discrete event
have to solve the problem mmax|(Y —H @U)i|. This  systems (DES). We have introduced the basic operations of
problem can be solved using formula (1). the max-plus algebra and stated some of the main definitions,

Example 5.3 Let us again consider the production systerﬁheorems' and propertles_ of the max-plus qlgebra. Next, we
of Section IV-B and the matrid and the vectors) andy ~1@ve given an introduction to ma_x—plus linear DES, and
as defined in Example 5.1. If the finished parts should leayesented Some elementary analysis and control methods for
the system before time instants 17, 19, 24, and 27 and & Plus linear DES. _ .

we want to feed the raw material to the system as late as For more information on the analy'SIS of max-plu§ linear
possible, then we should feed raw material to the systeHine-invariant DES such as production systems, timetable

at time instants 0, 6, 11, 16 since the largest subsolutidffPendent transportation networks, queuing systemsy arra
of HoU — [17 19 24 ZXT is U — [O 6 11 ]qT processors, and so on the interested reader is referreg-to [1

[3], [13], [14], [16], [17], [19], [32], [34], [40], [42]-[®] and

The actual output time¥ are given byY = HgU = .
P 9 y © the references therein.

[11 17 22 ZjT. Note that the largest deviatioh be-
tween the desired and the actual output times is equal to ACKNOWLEDGMENTS
6. The input times that minimize this deviation are given by
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